## Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

## CANDIDATE NAME

CENTER NUMBER

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |

CANDIDATE NUMBER

## MATHEMATICS (US)

0444/21
Paper 2 (Extended)
May/June 2016 1 hour 30 minutes

Candidates answer on the Question Paper.
Additional Materials: Geometrical instruments

## READ THESE INSTRUCTIONS FIRST

Write your Center number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.

## CALCULATORS MUST NOT BE USED IN THIS PAPER.

All answers should be given in their simplest form.
If work is needed for any question it must be shown in the space provided.
The number of points is given in parentheses [ ] at the end of each question or part question.
The total of the points for this paper is 70 .

## Formula List

For the equation

$$
a x^{2}+b x+c=0
$$

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Lateral surface area, $A$, of cylinder of radius $r$, height $h$.

Lateral surface area, $A$, of cone of radius $r$, sloping edge $l$.

Surface area, $A$, of sphere of radius $r$.

Volume, $V$, of pyramid, base area $A$, height $h$.

Volume, $V$, of cone of radius $r$, height $h$.

Volume, $V$, of sphere of radius $r$.

$A=2 \pi r h$
$A=\pi r l$
$A=4 \pi r^{2}$
$V=\frac{1}{3} A h$
$V=\frac{1}{3} \pi r^{2} h$
$V=\frac{4}{3} \pi r^{3}$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$

Area $=\frac{1}{2} b c \sin A$

1 A train leaves Zurich at 2240 and arrives in Vienna at 0732 the next day.
Work out the time taken.
$\qquad$
h
$\min [1]$
2 From a sample of 25 batteries, 3 are faulty.
Work out the percentage of faulty batteries.
$\qquad$

3 Write $1.27 \times 10^{-3}$ as an ordinary number.
$\qquad$

4 Work out $7+8 \times 3-6 \div 2$.

5 Omar changes 2000 Saudi Arabian riyals (SAR) into dollars when the exchange rate is $1 \mathrm{SAR}=\$ 0.27$.
Work out how much Omar receives.

6 Find the least common multiple (LCM) of 36 and 48.
$7 y=m x+b$

Find the value of $y$ when $m=-2, x=-7$ and $b=-3$.

$$
y=
$$

## $8 \quad y=\frac{q x}{p}$

Solve for $x$.

$$
x=
$$



NOT TO
SCALE

Triangle $A B C$ is isosceles and $A C$ is parallel to $B D$.

Find the value of $a$ and the value of $b$.

$$
\begin{aligned}
& a= \\
& b=
\end{aligned}
$$

10 Solve the system of linear equations.

$$
\begin{aligned}
& 2 x+y=3 \\
& 3 x+y=1
\end{aligned}
$$


$A, B, P$ and $Q$ lie on the circle, center $O$.
Angle $A P B=56^{\circ}$.
Find the value of
(a) $x$,

$$
x=
$$

(b) $y$.

$$
\begin{equation*}
y= \tag{1}
\end{equation*}
$$

12 Simplify $\left(16 p^{16}\right)^{\frac{1}{4}}$.
$\qquad$
13 Solve the inequality.

$$
n+7<5 n-8
$$



The graph of $y=\mathrm{f}(x)$ is shown in the diagram.
Write down the equation of the trigonometric function, $\mathrm{f}(x)$.

$$
\begin{equation*}
\mathrm{f}(x)= \tag{3}
\end{equation*}
$$

15
$7, \quad 5, \quad 3, \quad 1, \quad-1$,
(a) Find the next term in this sequence.
$\qquad$
(b) Find the $n$th term of the sequence.

16 Work out $\frac{6}{7} \div 1 \frac{2}{3}$.
Give your answer as a fraction in its lowest terms.

17 Five angles of a hexagon are each $115^{\circ}$.
Calculate the size of the sixth angle.

18 A car of length 4 m is traveling at $72 \mathrm{~km} / \mathrm{h}$.
It passes over a bridge of length 36 m .
Calculate the time, in seconds, it takes to pass over the bridge completely.
$19 y$ varies directly as the positive square root of $x$.
When $x=9, y=12$.
Find $y$ when $x=\frac{1}{4}$.

$$
y=
$$

20 The probability of a baseball team winning or losing in their first two matches is shown in the tree diagram.


Find the probability that the baseball team wins at least one match.

21 (a) Simplify $\sqrt{125}$.
(b) Expand and simplify.

$$
(3+2 \sqrt{5})(2-3 \sqrt{5})
$$

$22 A B$ is an arc of a circle, center $O$, radius 9 cm . The length of the arc $A B$ is $6 \pi \mathrm{~cm}$. The area of the sector $A O B$ is $k \pi \mathrm{~cm}^{2}$.

Find the value of $k$.


$$
k=
$$

23


Work out the area of this trapezoid.
$\qquad$ $\mathrm{cm}^{2}$ [4]

24 Factor completely.
(a) $2 a+4+a p+2 p$
(b) $162-8 t^{2}$
$25 \quad A$ is the point $(4,1)$ and $B$ is the point $(10,15)$.
Find the equation of the perpendicular bisector of the line $A B$.


NOT TO
SCALE
(a) Work out the exact area of triangle $A B C$.
(b) Work out the length of $A C$.

$$
A C=
$$

$\qquad$ cm [3]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Internationa Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

